
EXAM I SOLUTIONS, MA4027, Summer 2004

Needless to say, there are other solutions.

*****************************************************************

1. A strongly regular graph, or SR-graph, is a graph G that is regular of degree k, with v
vertices, satisfying the following conditions:

If p, q are adjacent vertices, then exactly λ vertices are adjacent to both p and q.

If p, q are nonadjacent vertices, then exactly µ vertices are adjacent to both p and q.

Such a graph G is said to have parameters (v, k, λ, µ). If both G and its complement
are connected, G is said to be a nontrivial SR-graph, otherwise G is a trivial SR-graph.
Show that the Petersen graph is nontrivial SR, and find its parameters.

Solution: The Petersen Graph has ten vertices and is regular of degree three, so
v = 10 and k = 3. The neighborhoods of adjacent vertices are disjoint, so λ = 0, while
each nonadjacent pair has a common neighbor, so µ = 1. Letting G = (V, E) denote the
Petersen graph, we now show that G is connected. Let x, y ∈ V , and assume that
xy 6∈ E. Since |N(x)| = |N(y)| = 6 and |N(x)

⋃
N(y)| ≤ 8, it follows that

N(x)
⋂

N(y) 6= ∅. Thus the Petersen graph is nontrivial SR with parameters v = 10,
k = 3, λ = 0, and µ = 1.

2. A saturated hydrocarbon is a molecule CmHn in which every carbon atom has four
bonds, every hydrogen atom has one bond, and no sequence of bonds is cyclic. Give a
graph-theoretic argument that, for every integer m, CmHn can exist only if n = 2m + 2.

Proof: We can model a hypothetical saturated hydrocarbon with a graph G on m + n
vertices. Since carbon atoms have four bonds, we have m vertices of degree four, while
the remaining n vertices represent hydrogen atoms and have degree one. The graph is a
tree, since no sequence of bonds is cyclic. Since G is a tree, the number of edges in
E(G) is m + n − 1. By the degree-sum formula, the number of edges in E(G) is
1
2
(4m + n) = 2m + n/2. Thus m + n− 1 = 2m + n/2, and it follows that n = 2m + 2. 2

3. Recall that a tournament is an orientation of Kn. A tournament G is transitive if, for
all x, y, z ∈ V (G), xy ∈ E(G) and yz ∈ E(G) imply xz ∈ E(G); in other words, the
adjacency relation is transitive. Prove that G is a transitive tournament if and only if
G contains no directed cycle.

Proof: Let G be a tournament. By definition, G is transitive if and only if G contains
no cyclic triple. First suppose that G contains a cycle of length k > 3. If k = 3, we’re
done, so assume k > 3. Suppose C is a directed cycle on vertices v1, v2, . . . vk. Let j be
the first index in 3, 4, . . . , k such that vjv1 ∈ E(G). (Note that j is well-defined, since



vkv1 ∈ E(G).) Then v1vj−1vjv1 is a directed 3-cycle. It follows that if G contains a
directed cycle of any length, then G contains a cyclic triple and is not transitive. Now
suppose that G contains no cycles of any length. Then clearly G contains no cyclic
triple, and thus G is transitive. 2

4. Prove that G is bipartite if and only if every subgraph H of G contains an independent
set consisting of at least half of V (H).

Proof: First suppose that G = (X, Y, E) is bipartite. Let H = (X ′, Y ′, E ′) be a
subgraph of G. Then H is bipartite. The larger of X ′, Y ′ (choose arbitrarily if
|X ′| = |Y ′|) is an independent set containing at least half of V (H). Now suppose that
G is not bipartite. Then G contains a subgraph H ∼= C2k+1. Since any set of more than
k vertices of H must contain two adjacent vertices, no independent set in H contains
half of V (H). 2

5. Use the König-Egerváry Theorem (Theorem 3.1.16) to prove Hall’s Theorem (Theorem
3.1.11).

Solution: The theorem to be proven states that, for any bipartite graph
G = (X, Y, E), G has an X-saturating matching iff |N(S)| ≥ |S| for every S ⊆ X. The
König-Egerváry Theorem states that if G = (X, Y, E) is bipartite, then the size of a
smallest vertex cover is equal to that of a largest matching.

We now proceed with the

Proof: Let G = (X, Y, E). If |N(S)| < |S| for some S ⊆ X, then no S-saturating
matching, and therefore no X-saturating matching, can exist. We must prove the
converse. Suppose, then, that |N(S)| ≥ |S| for every S ⊆ X. It suffices to show that
|K| ≥ |X| for every cover K, since then by the König-Egerváry Theorem |M | ≥ |X| for
every maximum-cardinality matching M . So let K be a cover in G, and let S = X −K.
Since K is a cover, and since S 6⊆ K, then we know that N(S) ⊆ K. It follows that

|K| ≥ |X − S| + |N(S)| = |X| − |S| + |N(S)| ≥ |X|,

and the proof is complete. 2
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